

ACADEMIC
PRESS

Available online at www.sciencedirect.com

SCIENCE @ DIRECT®

Biochemical and Biophysical Research Communications 307 (2003) 47–51

BBRC

www.elsevier.com/locate/ybbrc

Phospholipase C-dependent Ca^{2+} release by worm and mammal sperm factors[☆]

Kethurah P. Howell,^{a,b} Aurelia Skipwith,^{a,b} Antony Galione,^{b,c} and William R. Eckberg^{a,b,*}

^a Department of Biology, Howard University, 415 College Street, NW, Washington, DC 20059-0001, USA

^b Marine Biological Laboratory, Woods Hole, MA 02543, USA

^c Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK

Received 30 May 2003

Abstract

Egg activation in all animals evidently requires the synthesis of inositol 1,4,5-trisphosphate (InsP_3) from phosphatidylinositol 4,5-bisphosphate (PIP_2) by phospholipase C (PLC). Depending on the organism, InsP_3 elicits either calcium oscillations or a single wave, which in turn initiates development. A soluble component in boar sperm that activates mammalian eggs has been suggested to be a PLC isoform. We tested this hypothesis in vitro using egg microsomes of *Chaetopterus*. Boar sperm factor elicited Ca^{2+} release from the microsomes by an InsP_3 -dependent mechanism. The PLC inhibitor U-73122, but not its inactive analog U-73343, blocked the response to sperm factor but not to InsP_3 . U-73122 also inhibited the activation of fertilized and parthenogenetic eggs. *Chaetopterus* sperm also contained a similar activity. These results strongly support the hypothesis that sperm PLCs are ubiquitous mediators of egg activation at fertilization.

© 2003 Elsevier Science (USA). All rights reserved.

Egg activation at fertilization results from one or more waves of intracellular Ca^{2+} release [1–3]. This release originates from intracellular calcium stores [4–6] and is elicited by one or more intracellular second messengers. These include inositol 1,4,5-trisphosphate (InsP_3), cyclic adenosine diphosphate ribose (cADPR), and nicotinate adenine dinucleotide phosphate (NA-ADP). The receptors for InsP_3 and cADPR are on the endoplasmic reticulum (ER) [7]; those for NAADP are on lysosomal-related organelles [8]. Of these three, cADPR and NAADP release Ca^{2+} in sea urchin eggs and homogenates [9–12], but not those of most other organisms [2]. However, all animal eggs apparently utilize InsP_3 in their Ca^{2+} release at fertilization [13–17].

The biochemical processes leading to InsP_3 synthesis and Ca^{2+} release at fertilization have been controversial.

Two general classes of hypotheses, involving either sperm–egg contact or fusion, differ in that contact-based hypotheses suggest that sperm activate eggs by binding to receptors and activating intracellular signal transduction systems similar to those in somatic cells [18], whereas fusion-based hypotheses suggest that sperm introduce some soluble substance into the egg that directly activates some step in the signal transduction process [11,18].

While there is evidence to suggest that sperm can activate eggs of at least one species by contact [19], more recent research has been directed at soluble sperm factors that could be introduced into the egg after fusion. The sperm factor hypothesis is based on the observations that microinjection of sperm [20] or soluble extracts from sperm but not other tissues can elicit Ca^{2+} responses characteristic of fertilization and activate eggs [21–23]. Such activity is apparently widespread in the animal kingdom, being found in vertebrates [22,24,25], non-vertebrate chordates [26], and nemertean worms [21].

Since mammalian sperm have phospholipase C (PLC) activity that is capable of synthesizing InsP_3 [15], it was

[☆] Abbreviations: CaFASW, calcium-free artificial seawater; cADPR, cyclic adenosine diphosphate ribose; InsP_3 , inositol (1,4,5)-trisphosphate; NAADP, nicotinate adenine dinucleotide phosphate; PIP_2 , phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C.

* Corresponding author. Fax: 1-202-806-4564.

E-mail address: weckberg@howard.edu (W.R. Eckberg).

suspected that the active agent in sperm factor might be a PLC. However, initial studies indicated that no known isoform of PLC was the active component either *in vivo* or in sea urchin egg homogenates [27]. An alternative approach, which involved searches for PLC-related ESTs in mouse, human, and monkey testes, identified a novel phospholipase C, PLC ζ , that could activate egg Ca^{2+} oscillations and development *in vivo* and Ca^{2+} release in sea urchin egg homogenates [13,28].

Because they can respond to additional second messengers that play only a marginal role in mammalian eggs, and in addition display only a single calcium transient at fertilization, sea urchin egg homogenates may not be an appropriate model for egg activation in mammals. Here we have used egg microsomes of *Chaetopterus* to test whether or not PLC in sperm factor is necessary and sufficient to elicit Ca^{2+} release. Fertilized *Chaetopterus* eggs, like those of mammals, undergo Ca^{2+} oscillations in response to fertilization [29]. Also like mammal eggs, *Chaetopterus* egg microsomes can release Ca^{2+} only in response to InsP_3 [30]. Therefore, if the active component of sperm factor is a PLC, inhibition of PLC activity should prevent mammalian sperm factor from releasing Ca^{2+} in this system.

Accordingly, we tested whether or not the PLC inhibitor, U-73122, could prevent mammalian sperm factor from releasing Ca^{2+} . We found that it could. In addition, the same inhibitor blocked egg activation by sperm. Protostome eggs can also be activated by exposure to excess K^+ . It had been long presumed that the mechanism of this activation is a voltage-gated Ca^{2+} influx [31,32]. However, more recent studies have shown that excess K^+ activates Ca^{2+} waves similar to those at fertilization [29], so it is not unlikely that the activation mechanisms in K^+ -activated eggs involve InsP_3 synthesis like those in fertilized eggs. In support of this hypothesis, we report that U-73122 also prevented activation by excess K^+ . Finally, we show that *Chaetopterus* sperm also contain a factor with similar enzymatic properties to those of mammalian sperm factor. This suggests that such factors may be widespread in the animal kingdom.

Methods

Gamete preparation. Adult specimens of *Chaetopterus pergamentaceus* were obtained either from the Marine Resources Division, Marine Biological Laboratory, Woods Hole, MA or from Cape Fear Biological, Southport, NC. Gametes were obtained, handled, fertilized or artificially activated with 50 mM excess KCl as described previously [33]. U-73122 and U-73343 were obtained from Calbiochem and used from 5 mM stock solutions in DMSO. Other reagents were obtained from Sigma–Aldrich.

Chaetopterus egg homogenate. Vitelline envelope-free metaphase I arrested oocytes were washed in calcium-free artificial seawater (CaFASW), then homogenized in GluIM+(GluIM [333 mM *N*-methyl-glucamine, 333 mM potassium acetate, 27 mM Hepes, and 1.3 mM

magnesium chloride, pH 7.2], protease inhibitors [100 $\mu\text{g}/\text{ml}$ soybean trypsin inhibitor, 25 $\mu\text{g}/\text{ml}$ leupeptin, and 25 $\mu\text{g}/\text{ml}$ aprotinin], and an ATP regenerating system [10 mM ATP, 100 mM phosphocreatine, and 0.1 U/ml creatine phosphokinase]), and centrifuged 14,000g for 10 s in a microfuge. The supernatants were aliquotted and stored at -80°C until use.

Sperm extracts. Boar sperm extract, obtained as described [17], was the generous gift of Dr. Karl Swann, University College, London, UK. It was dissolved at 50 mg/ml in water.

Chaetopterus sperm extract was prepared by a similar method. Sperm were separated from gonadal debris by differential centrifugation [33]. Then the sperm were washed in CaFASW and centrifuged 10,000 rpm for 5 min at 4°C . The pellet was suspended in an equal volume of extraction buffer (120 mM KCl, 20 mM Hepes, pH 7.5, 100 $\mu\text{g}/\text{ml}$ soybean trypsin inhibitor, 25 $\mu\text{g}/\text{ml}$ leupeptin, and 25 $\mu\text{g}/\text{ml}$ aprotinin). The sperm were lysed by five cycles of freeze-thawing. Lysates were centrifuged 100,000g for 1 h at 4°C . Supernatants were collected and concentrated using Centricon C-30 filters (Amicon). Concentrated extracts (\sim 10 mg/ml) were frozen at -80°C in 5–10 μl aliquots.

Calcium release in vitro. Homogenates were slowly diluted 1:20 in Mannitol IM+ ([250 mM mannitol, 250 mM potassium gluconate, 20 mM Hepes, and 1 mM MgCl_2 , pH 7.2], protease inhibitors [100 $\mu\text{g}/\text{ml}$ soybean trypsin inhibitor, 25 $\mu\text{g}/\text{ml}$ leupeptin, and 25 $\mu\text{g}/\text{ml}$ aprotinin], and an ATP regenerating system [10 mM ATP, 100 mM phosphocreatine, and 0.1 U/ml creatine phosphokinase]) over 3 h at 17°C . Fluo-3 was added to a final 3 μM .

InsP_3 was added to a final 2 μM ; sperm extracts were added to a final 20–100 $\mu\text{g}/\text{ml}$. In some experiments, 1 μl of 5 mM phosphatidylinositol bisphosphate (PIP_2) were mixed, incubated 5 min at room temperature, and added to a final sperm factor concentration of 20–100 $\mu\text{g}/\text{ml}$. The inhibitors (U-73122 and U-73343) were added at a final concentration of 10 μM . Changes in free Ca^{2+} were measured on either a Deltascan (Photon Technology International, Monmouth Junction, NJ) or an LS55 (Perkin–Elmer, Boston, MA) as described [30].

Results and discussion

Boar sperm factor added to *Chaetopterus* egg homogenates elicited a release of Ca^{2+} after a delay (Fig. 1A). This response is similar to that of sea urchin egg homogenates [27,34]. Similarly, sperm factor prepared from *Chaetopterus* also elicited a Ca^{2+} release after a delay (Fig. 1B).

Having established that sperm factor can elicit Ca^{2+} release in *Chaetopterus* egg homogenates, we tested by homologous desensitization whether or not it releases Ca^{2+} through InsP_3 -gated channels. Prior addition of saturating amounts of InsP_3 to the homogenates abolished their ability to release Ca^{2+} in response to sperm factor (Fig. 2A). Furthermore, prior exposure to sperm factor from *Chaetopterus* (Fig. 1B) or boar (data not shown) greatly reduced the response to InsP_3 . Together, these results demonstrate that sperm factor releases Ca^{2+} through InsP_3 -sensitive stores. To test whether *Chaetopterus* sperm factor contains a PLC, sperm factor was incubated with exogenous PIP_2 and added to the egg homogenate. The release was immediate as observed upon InsP_3 addition (Fig. 2B). When PIP_2 and sperm factor were simultaneously added to the egg homoge-

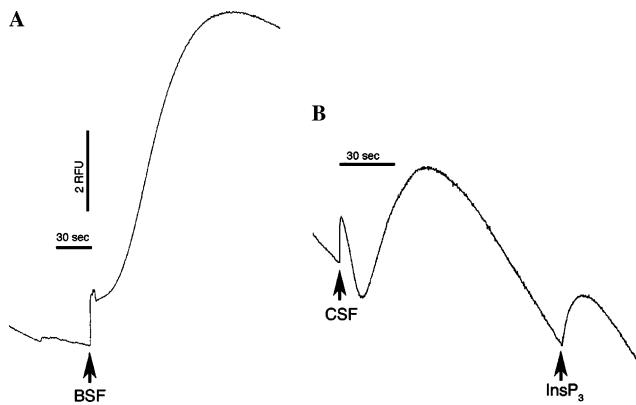


Fig. 1. Sperm factor from either mammalian or homologous sources elicited Ca^{2+} release in *Chaetopterus* egg homogenates. (A) Heterologous boar sperm factor (BSF) was added at the indicated time and fluorescence was monitored. (B) Homologous *Chaetopterus* sperm factor (CSF) prepared similarly to the boar sperm factor was added at the indicated time and fluorescence was monitored. Prior exposure to homologous sperm factor substantially reduced the response to InsP_3 . The horizontal scale bar represents 30 s; the vertical bar represents 2 RFU. In the other experiments, RFU values are not given, as all figures have been drawn to the same vertical scale.

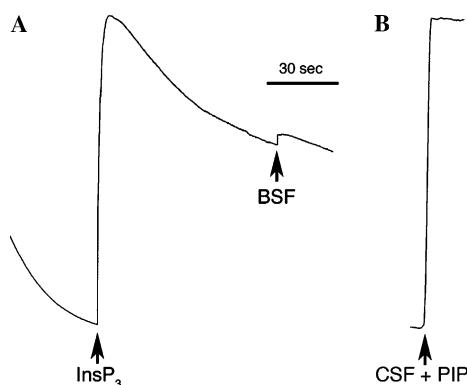


Fig. 2. Involvement of InsP_3 in *Chaetopterus* egg homogenate Ca^{2+} release in response to sperm factor. (A) InsP_3 was added at the indicated time and fluorescence was monitored. After the released Ca^{2+} was resequestered, BSF was added. There was no release, demonstrating that the Ca^{2+} releasing activity of sperm factor requires InsP_3 . (B) *Chaetopterus* sperm factor was preincubated for 5 min with PIP_2 and added to egg homogenate. Ca^{2+} was immediately released as upon addition of InsP_3 indicating that the sperm factor contains a PLC activity that synthesizes InsP_3 .

rate, Ca^{2+} release occurred after a delay as observed with sperm factor alone (data not shown). This establishes that *Chaetopterus* sperm contain a PLC activity with similar activity to that of mammalian sperm factor and is the first demonstration of such an activity in an invertebrate sperm.

To test whether PLC activity is required at fertilization, we tested the effects on fertilization of U-73122, a competitive inhibitor of agonist-induced PLC activation of Ca^{2+} release [35], and that of U-73343, an analog of U-73122 that is a very weak inhibitor of PLC. U-73122

inhibited egg activation in a concentration-dependent manner (Fig. 3A), indicating that egg activation is PLC-dependent. In addition, the compound also inhibited activation by excess K^+ (Fig. 3A). By contrast, U-73343, a much weaker PLC antagonist, was ineffective at inhibiting activation by either sperm or excess K^+ (Fig. 3B).

If sperm factor-induced Ca^{2+} release is PLC-dependent, U-73122 should block it but not InsP_3 -induced Ca^{2+} release. Prior addition of 10 μM U-73122 to the homogenate inhibited release by the sperm factor (Fig. 4A), but not by InsP_3 (Fig. 4B). This demonstrates that U-73122 does not prevent sperm factor-induced Ca^{2+} release by interfering with InsP_3 binding or response, directly. Rather, it must block Ca^{2+} release by interfering with InsP_3 synthesis. By contrast, similar concentrations of U-73343 did not inhibit Ca^{2+} release from the homogenate either by sperm factor or InsP_3 (Figs. 4C and D).

Sperm extracts microinjected into mammalian or nemerteian eggs elicit Ca^{2+} oscillations after a delay [13,17,18,36]. When introduced into sea urchin homogenates, they elicit a single Ca^{2+} release event after a delay [17,34]. The fact that *Chaetopterus* egg microsomes do not undergo Ca^{2+} oscillations in response to sperm factor, even though the eggs undergo oscillations at fertilization, demonstrates that the oscillatory behavior is a property of intact eggs that is lost upon homogenization and *in vitro* assay.

These delays have been interpreted to indicate the synthesis of some kind of second messenger(s). Because sea urchin egg homogenates release Ca^{2+} in response to multiple second messengers, it could not be unambiguously established that the release was due to any particular second messenger.

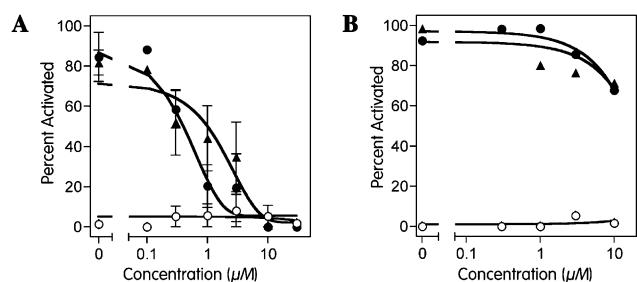


Fig. 3. Effects of strong and ineffective PLC inhibitors on egg activation in *Chaetopterus*. (A) The indicated concentrations of U-73122 were added to unfertilized eggs. After 15 min, sperm or 50 mM excess K^+ was added. After 30 min, eggs were scored for activation as evidenced by polar body formation. (B) The indicated concentrations of U-73343 were added to unfertilized eggs. After 15 min, sperm or excess K^+ was added. After 30 min, eggs were scored for activation as evidenced by polar body formation. Each point represents the means \pm SD of 3–5 separate experiments. Symbols: filled circles—fertilized eggs; triangles—KCl-activated eggs; and open circles—unfertilized eggs that received no further treatment.

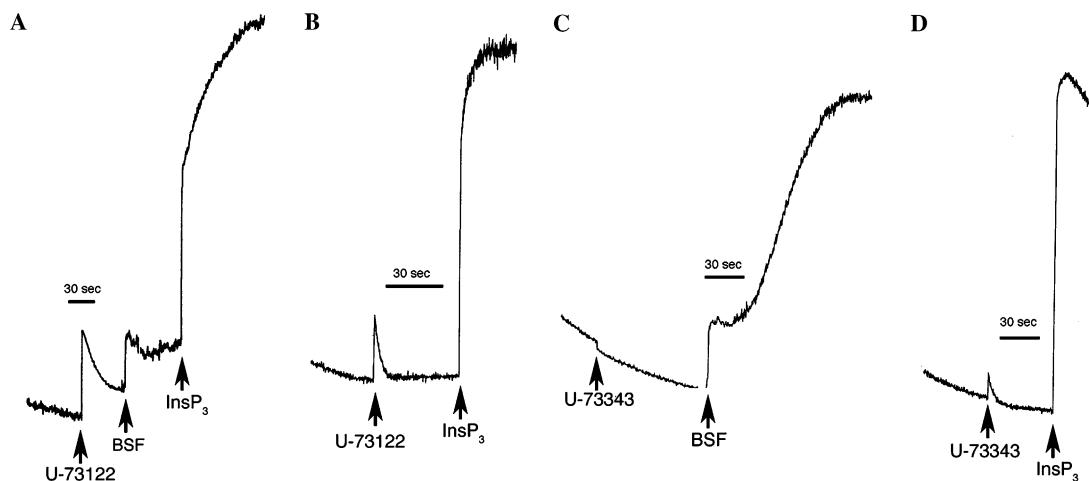


Fig. 4. Effects of strong and ineffective PLC inhibitors on Ca^{2+} release from *Chaetopterus* egg homogenates in response to InsP_3 and sperm factor. (A) At the indicated times, the potent PLC inhibitor U-73122 and BSF were added to the homogenate and fluorescence was monitored. After U-73122 addition, BSF failed to elicit Ca^{2+} release. (B) At the indicated times, U-73122 and InsP_3 were added to the homogenate and fluorescence was monitored. U-73122 had no effect on InsP_3 -induced Ca^{2+} release. (C) At the indicated times, the weak PLC inhibitor U-73343 and BSF were added to the homogenate and fluorescence was monitored. U-73343 had no effect on BSF-induced Ca^{2+} release. (D) At the indicated times, U-73343 and InsP_3 were added to the homogenate and fluorescence was monitored. U-73343 had no effect on InsP_3 -induced Ca^{2+} release.

By contrast, studies of mouse eggs *in vivo* suggested that PLC activity was required for sperm factors to elicit Ca^{2+} oscillations in living eggs. These studies led to the identification of a novel PLC isoform, $\text{PLC}\zeta$, that is sperm-specific and able to elicit Ca^{2+} oscillations in living eggs and Ca^{2+} release from sea urchin homogenates [13,28].

The fact that an agent can elicit such Ca^{2+} release does not necessarily mean that it is the agent active at fertilization. In fact, experiments with sea urchin homogenates failed to show a clear involvement of PLC or InsP_3 in Ca^{2+} release in response to sperm factor [27,34]. Our experiments were designed to test this directly. Since *Chaetopterus* egg homogenates, like mammalian eggs, do not respond to second messengers other than InsP_3 [30], we tested whether PLC activity is necessary for mammalian sperm factor to release Ca^{2+} from them. The results confirmed that PLC activity is present in the sperm extracts and showed that it is essential for the functioning of crude sperm extracts *in vitro*. These results demonstrate that PLC activity from sperm is both necessary and sufficient to elicit Ca^{2+} release in and activate eggs.

The structure of $\text{PLC}\zeta$ suggested that it might be widespread in animal sperm. Indeed, crude sperm factors have been prepared from nemertean worms [18], although their biochemical properties have not been reported. Our earlier, preliminary results on *Chaetopterus* sperm failed to demonstrate a factor that could release Ca^{2+} from egg homogenates [30], but the present study clearly shows that it exists. Apparently, the difference is due to improved methods of sperm factor preparation and differences in the assay conditions. In this study, sperm factor activity was assayed in Mannitol IM instead of GluIM, and protein concentrations of

the sperm lysates were at least an order of magnitude higher than in our previous studies in which the lysates were not concentrated. Thus, our previous assays were not sensitive enough to detect the activity.

Our finding that U-73122 inhibited parthenogenetic activation by excess K^+ at similar concentrations to those that blocked activation by sperm may seem surprising, as K^+ has long been supposed to act by depolarizing the plasma membrane and allowing a Ca^{2+} influx. However, K^+ -induced egg activation is also associated with repetitive Ca^{2+} transients that are similar to those in response to fertilization [29]. Since Ca^{2+} oscillations in eggs are associated with InsP_3 synthesis [11,12,37–39], it should not be surprising that K^+ -activation also involves PLC activity. This result also indicates that the eggs contain a PLC that can contribute to the activation process. The Ca^{2+} influx in response to excess K^+ might thus activate the egg by activating a Ca^{2+} -dependent PLC present in the egg, whereas sperm activate the egg through a Ca^{2+} -dependent PLC of their own.

Acknowledgments

This research was supported in part by NSF MCB-0090108 to W.R.E. K.S. was partially supported by the NSF REU program, Marine Models in Biological Research at the Marine Biological Laboratory. We thank Dr. Karl Swann for the generous gift of boar sperm factor.

References

- [1] R. Nuccitelli, How do sperm activate eggs?, *Curr. Top. Dev. Biol.* 25 (1991) 1–16.
- [2] S.A. Stricker, Comparative biology of calcium signaling during fertilization and egg activation in animals, *Dev. Biol.* 211 (1999) 157–176.

- [3] M.J. Whitaker, K. Swann, Lighting the fuse at fertilization, *Development* 117 (1993) 1–12.
- [4] M. Terasaki, C. Sardet, Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum, *J. Cell Biol.* 115 (1991) 1031–1037.
- [5] M. Terasaki, L.A. Jaffe, G.R. Hunnicutt, J.A. Hammer, Structural change of the endoplasmic reticulum during fertilization: evidence for loss of membrane continuity using the green fluorescent protein, *Dev. Biol.* 179 (1996) 320–328.
- [6] S.A. Stricker, R. Silva, T. Smythe, Calcium and endoplasmic reticulum dynamics during oocyte maturation and fertilization in the marine worm *Cerebratulus lacteus*, *Dev. Biol.* 203 (1998) 305–322.
- [7] C.A. Ross, J. Meldolesi, T.A. Milner, T. Satoh, S. Supattapone, S.H. Snyder, Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons, *Nature* 339 (1989) 468–470.
- [8] G.C. Churchill, Y. Okada, M. Yamasaki, J.M. Thomas, A.A. Genazzani, S. Patel, A.J. Morgan, A. Galione, NAADP mobilizes Ca^{2+} from reserve granules, lysosome-related organelles in sea urchin eggs, *Cell* 111 (2002) 703–708.
- [9] A. Galione, A. McDougall, W.B. Busa, N. Willmott, I. Gillot, M. Whitaker, Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs, *Science* 261 (1993) 348–352.
- [10] A.A. Genazzani, A. Galione, Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca^{2+} from a thapsigargin-insensitive pool, *Biochem. J.* 315 (1996) 721–725.
- [11] K.T. Jones, Ca^{2+} oscillations in the activation of the egg and development of the embryo in mammals, *Int. J. Dev. Biol.* 42 (1998) 1–10.
- [12] L.A. Jaffe, A.F. Giusti, D.J. Carroll, K.R. Foltz, Ca^{2+} signalling during fertilization of echinoderm eggs, *Semin. Cell Dev. Biol.* 12 (2001) 45–51.
- [13] C.M. Saunders, M.G. Larman, J. Parrington, L.J. Cox, J. Royse, L.M. Blayney, K. Swann, F.A. Lai, PLC ζ : a sperm-specific trigger of Ca^{2+} oscillations in eggs and embryo development, *Development* 129 (2002) 3533–3544.
- [14] H. Wu, J. Smyth, V. Luzzi, K. Fukami, T. Takenawa, S.L. Black, N.L. Allbritton, R.A. Fissore, Sperm factor induces intracellular free calcium oscillations by stimulating the phosphoinositide pathway, *Biol. Reprod.* 64 (2001) 1338–1349.
- [15] A. Rice, J. Parrington, K.T. Jones, K. Swann, Mammalian sperm contain a Ca^{2+} -sensitive phospholipase C activity that can generate InsP3 from PIP2 associated with intracellular organelles, *Dev. Biol.* 228 (2000) 125–135.
- [16] K.T. Jones, V.L. Nixon, Sperm-induced Ca^{2+} oscillations in mouse oocytes and eggs can be mimicked by photolysis of caged inositol 1,4,5-trisphosphate: evidence to support a continuous low level production of inositol 1,4,5-trisphosphate during mammalian fertilization, *Dev. Biol.* 225 (2000) 1–12.
- [17] K.T. Jones, C. Cruttwell, J. Parrington, K. Swann, A mammalian sperm cytosolic phospholipase C activity generates inositol trisphosphate and causes Ca^{2+} release in sea urchin egg homogenates, *FEBS Lett.* 437 (1998) 297–300.
- [18] S.A. Stricker, Intracellular injections of a soluble sperm factor trigger calcium oscillation and meiotic maturation in unfertilized oocytes of a marine worm, *Dev. Biol.* 186 (1997) 185–201.
- [19] M.C. Gould, J.L. Stephano, Peptides from sperm acrosomal protein that initiate egg development, *Dev. Biol.* 146 (1991) 509–518.
- [20] J. Tesarik, M. Sousa, J. Testart, Human oocyte activation after cytoplasmic sperm injection, *Hum. Reprod.* 9 (1994) 511–518.
- [21] S.A. Stricker, Repetitive calcium waves induced by fertilization in the nemertean worm *Cerebratulus lacteus*, *Dev. Biol.* 176 (1996) 243–263.
- [22] K. Swann, A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs, *Development* 110 (1990) 1295–1302.
- [23] H. Wu, C.L. He, R.A. Fissore, Injection of a porcine sperm factor triggers calcium oscillations in mouse oocytes and bovine eggs, *Mol. Reprod. Dev.* 46 (1997) 176–189.
- [24] J.-B. Dong, T.-S. Tang, F.-Z. Sun, *Xenopus* and chicken sperm contain a cytosolic soluble protein factor which can trigger calcium oscillations in mouse eggs, *Biochem. Biophys. Res. Commun.* 268 (2000) 947–951.
- [25] G.D. Palermo, O.M. Avrech, L.T. Colombero, H. Wu, Y.M. Wolny, R.A. Fissore, Z. Rosenwaks, Human sperm cytosolic factor triggers Ca^{2+} oscillations and overcomes activation failure of mammalian oocytes, *Mol. Hum. Reprod.* 3 (1997) 367–374.
- [26] K. Kyozuka, R. Deguchi, T. Mohri, S. Miyazaki, Injection of sperm extract mimics spatiotemporal dynamics of Ca^{2+} responses and progression of meiosis at fertilization of ascidian oocytes, *Development* 125 (1998) 4099–4105.
- [27] K.T. Jones, M. Matsuda, J. Parrington, M. Katan, K. Swann, Different Ca^{2+} -releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin egg homogenate and mouse eggs, *Biochem. J.* 346 (2000) 743–749.
- [28] L.J. Cox, M.G. Larman, C.M. Saunders, K. Hashimoto, K. Swann, F.A. Lai, Sperm phospholipase C ζ from humans and cynomolgus monkeys triggers Ca^{2+} oscillations, activation and development of mouse oocytes, *Reproduction* 124 (2002) 611–623.
- [29] W.R. Eckberg, A.L. Miller, Propagated and non-propagated calcium transients during egg activation in the annelid, *Chaetopterus*, *Dev. Biol.* 172 (1995) 654–664.
- [30] T.W. Thomas, W.R. Eckberg, F. Dubé, A. Galione, Mechanisms of calcium sequestration and release in *Chaetopterus* oocytes, *Cell Calcium* 24 (1998) 285–292.
- [31] L.F. Jaffe, Sources of calcium in egg activation: a review and a hypothesis, *Dev. Biol.* 99 (1983) 265–276.
- [32] L.F. Jaffe, Calcium explosions, waves, and pulses in activating eggs, in: C.B. Metz, A. Monroy (Eds.), *The Fertilization Response of the Egg*, Academic Press, New York, 1985, pp. 127–165.
- [33] W.R. Eckberg, S.D. Hill, BB-MMER [serial online] (1996) Available from <<http://www.mbl.edu/BiologicalBulletin/MMER/ECK/EckTit.html>>.
- [34] A. Galione, K.T. Jones, F.A. Lai, K. Swann, A cytosolic sperm protein factor mobilizes Ca^{2+} from intracellular stores by activating multiple Ca^{2+} release mechanisms independently of low molecular weight messengers, *J. Biol. Chem.* 14 (1997) 28901–28905.
- [35] R.J. Smith, L.M. Sam, J.M. Justen, G.L. Bundy, G.A. Bela, J.E. Bleasdale, Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness, *J. Pharmacol. Exp. Ther.* 253 (1990) 688–697.
- [36] S. Stricker, K. Swann, K. Jones, R. Fissore, Injections of porcine sperm extracts trigger fertilization-like calcium oscillations in oocytes of a marine worm, *Exp. Cell Res.* 257 (2000) 341–347.
- [37] M.J. Berridge, A. Galione, Cytosolic calcium oscillators, *FASEB J.* 2 (1988) 3074–3082.
- [38] Y.A. Abassi, D.J. Carroll, A.F. Giusti, R.J. Belton, K.R. Foltz, Evidence that Src-type tyrosine kinase activity is necessary for initiation of calcium release at fertilization in sea urchin eggs, *Dev. Biol.* 218 (2000) 206–219.
- [39] B. Ciapa, S. Chiri, Egg activation: upstream of the fertilization calcium signal, *Biol. Cell* 92 (2000) 215–233.